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Abstract 

This note is concerned with the formulation of a damped second order sys- 
tem as a first order dynamical system on a product space. This problem comes 
from the desire to have explicit representations of the infinitesimal generator of 
the first order system and, in particular, of the domain of this operator. This 
analysis is motivated by the need to find specific representations for Riccati 
operators that can be used in the development of computational schemes for 
hyperbolic control problems. The approach we take here is based on a natural 
factorization of the differential operators that define the second order model. 
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1 Introduction and Motivation 

In [2]-[4], Burns and King consider feedback control problems for damped hyperbolic 
systems. Specifically, they are concerned with obtaining integral representations of 
the feedback control law for purposes of designing reduced order controllers and sen- 
sors/actuators. The kernels of these integral representations are called functional 
gains. In [4], Burns and King use information about the spatial support of functional 
gains to guide the construction of reduced order controllers for a nonlinear damped 
elastic system. In order to use this information, it is important to have both quali- 
tative and quantitative information about these feedback gains. The very existence 
of these kernels is not always obvious and requires careful analysis of the system and 
the exact form of the damping model. Indeed, the damping model greatly impacts 
these gains (see [2]-[4]). One approach to modelling second order damped systems is 
to start with the undamped equation and then "add" a damping term of the form 
jD0x(t) to the second order system. Very often the damping operator D0 is assumed 
to have the form of a fractional power of the structural operator, i.e., D0 = Aa for 
0 < a < 1. This approach leads to formal models that mimic various damping 
models such as structural damping (a = 1/2) and Kelvin-Voigt damping (a = 1). 
However, in order to turn this formal second order system into a well-posed dynami- 
cal system on an appropriate state space, one is often faced with having to deal with 
fractional powers of differential operators leading to pseudo-differential operators. In 
this note we present several formulations of this problem, one of which makes use of 
physics based modelling. In many cases this approach can greatly simplify the anal- 
ysis and the resulting first order system has an explicit representation that avoids 
pseudo-differential operators. 

2 Abstract Second Order Damped Models 

Let H be a Hilbert space. We assume that A is a self-adjoint, strictly positive operator 
on H with domain Dom(A) dense in H. Consider the undamped second order control 
system 

x(t) + Ax(t) = Bu(t), (2.1) 

where B is a compact linear operator. It is well known that in this case, (2.1) is not 
stabilizable (for example, see [6]). All elastic systems have some internal damping and 
the exact form of this damping is important in the analysis and solution of control 
problems for elastic systems. In this paper we concentrate on the development of 
explicit state space models for the uncontrolled systems. The application of these 
models to control design will appear in a future paper. 

The general mathematical model often used as a prototype for describing con- 
trolled elastic systems with internal damping is obtained by adding a damping term 



of the form jAax(t) to (2.1) producing the abstract equation 

x{t) + Ax{t) + 7AQo;(i) = Bu{t), (2.2) 

where 
0 < 7,     0 < a < 1. 

To write this second order system as a first order dynamical system one first defines 
the spaces 

V = Dom(A1/2) 

and 

with inner products 

E = Dom{A1/2) xH = VxH, 

(ul,u2)v = (A^uuAl?2u2)H 

(2.3) 

(2.4) 

(2.5) 

and 

Wi 

«2 
w2 -1/ E 

= (A1/2ui,A1/2
U2)H + {wi,w2)H = (uuu2)v + (wi,w2)H, (2.6) 

respectively. 
Let Äa denote the operator defined on E by 

Aa — 
0 / 
-A   -jAa 

with domain Dom{Aa) defined by 

Dom{Aa) = Dom(A) x [Dom{Al/2) n Dom{Aa) 

It is well known (see, [1] and [5]) that the operator Aa is densely defined and 
dissipative on E and hence closable. The closure of Äa, denoted by Aa, generates a 
strongly continuous semigroup on E and the domain, Dom(Aa), is given by 

Dom(Aa) = |   I    e E | w € V, {Au + jAQw} e H\ . (2.7) 

Although (2.7) provides one representation of the domain of Aa, other (more explicit) 
representations can also be obtained. We proceed to describe two formulations of this 
closure based on factorizations of-A which we denote as Aaii and Aafi. In order to keep 
this note at a minimal length and yet present the basic ideas, we restrict ourselves to 
the case where 1/2 < a < 1. In this case the following result provides a representation 
of Dom(Aa) in terms of the fractional powers of A. The first formulation, AaA, is a 
special case of Theorem 1.1 in [5]. 



Theorem 2.1 If\<a< 1, then Dom(Aa) = Dom(AaA) where 

Dom(Aatl) = 

and if z e Dom(Aaji), then 

Aa,\Z — A0ji 

u 
w 

e E | u € £>om(,43/2-Q), uieF, 
(2.8) 

Tu 
tu 

->la{^1-au + 7u;} (2.9) 

Moreover, Aaj. generates an analytic semigroup on E. 

One way to view the representation (2.8)-(2.9) is to think of "factoring" (2.2) so 
that it is written in the form 

x{t) + Aa{A1~ax(t) + jx(t)} = Bu{t), (2.10) 

and then constructing the first order system based on this model. However, this 
approach does not always capture the true physics of the problem. In the next 
section we consider a second factorization and compare the corresponding first order 
model to the system with Aa;i given by (2.8)-(2.9). 

3    A Symmetric Factorization 

Another factorization of (2.2), that seems equally justified, is based on factoring A 
as A = A1!1 • A1'2 and writing (2.2) in the form 

x(t) + Al'2{All2x{t) + 1Aa-l'2x(t)} = Bu{t). (3.1) 

This is a very natural factorization and it leads to a "physics based" formulation of 
the first order model. This form of (2.2) leads us to consider the operator Aaj2 defined 
on E bv 

Dom{Aaa) = <z = 

and for z € Dom{Aa^), 

u 
w eE\u,weV, {A1/2u + -fAa-l'2w) e v\        (3. 2) 

u 
w 

w 
-Al'2{All2u + yAo-^w} (3.3) 

At first glance it might appear that AQ)1 and Aa^ have little in common. However, 
the following result establishes the equivalence between AaA and Aa,2 for the case 
where 1/2 < a < 1. Hence, it follows that (3.2)-(3.3) provides another representation 
of the closure of Aa. 



Theorem 3.1 If\<a< I, then Aa = AaA = Aafi. 

Proof. If \ < a < 1, then 0<a-5<5 and §<§-<*< 1. It follows that 

Dom{A3/2-a) C Dom{A1'2) C Dom{Aa-1'2). (3.4) 

Let z = [u,w]T G Dom(Aa,i). We show that z G Dom(Aaa) and AaAz = j4tt)22. 
Since z = [u,iu]T G Dom(AQ>i), it follows that 

u G Dom{A3/2-a) C Dom^1/2),        w G Dom{A^2) C Dom(Aa-1/2) 

and 

If y = -Aa{A1_Qw +7^} € if, then A~ay G Dom{Aa), where 

A-ay = _{i4l-au + 7W} = _i4l/2{^LV2-au + ^-1/2^}. (3.5) 

Also, 
-{A^2'au + 1A-ll2w} = A-l'2~ay = A-a(A^2y) G Dom(Aa).        (3.6) 

Since 
Al'2-au = A-a{Al/2u) G Dom(Aa), 

it follows from (3.6) that ^A'^w G Dom{Aa). Hence, 

-{A^u + jA*-1^} = -Aa{Al'2-au + 1A-^2w} = {A-ll2y) G Dom(A1?2), (3.7) 

and 
-Al'2{All2u + 1Aa~ll2w} = yeH. (3.8) 

Combining (3.4), (3.7) and (3.8), it follows that z G Dom{A^2) and Aa,2z = AaAz. 
Conversely, assume that z = [u,w]T G Dom{Aa^). Let 

y = -All2{Al'2u + jAa-V2w} G H 

and observe that 

A-i/2y = -{Al'2u + 1Aa-l'2w] = -Aa{Al'2'au + jA'^w} G Dom(A^2),   (3.9) 

implies 

-{All2-au + 7A-1/2«;} = A-l'2-ay = A-l'2{A-ay) G Dom{A1'2). (3.10) 

However, 7A_1/2ttf G Dom{All2), so it follows from (3.10) that 

A1/2~au G Dom(A1/2). 



Hence, 

-All2{Al'2-au + 1A-l'2w) = -{Al~au + jw} = (A~ay) e Dom(Aa),       (3.11) 

and 

-Aa{A1-au + jw}=yeH. (3.12) 

Note that w € V = Dom(All2) and {Al~au + jw} = A~ay e Dom(Aa).  Hence, 
Al~au = A~ay -ywe Dom{All2). If y = Al'2{Al-au), then 

= Aa-l{A-l'2y) = Aa-Z'2y = A'^^y e Dom^2'«). u 

Combining (3.4) with (3.11) and (3.12), it follows that z € Dom(AaA) and that 
Aa,\z = AafiZ. This completes the proof. 

This result shows that there are several equivalent representations of the closure 
of Aa. Although (2.8)-(2.9) and (3.2)-(3.3) both provide explicit characterizations of 
the domain of this closure, both characterizations are in terms of fractional powers 
of A. However, the representation (3.2)-(3.3) can be very useful. For example the 
following theorem follows from a direct calculation. 

Theorem 3.2 If\<a< I, then the Hubert adjoint [Aaa]* is defined on the domain 

Dom{[Aaa]*) = \z 
u 
w eE\u,w€V, {Al'2u - jA^^w} e v\ 

by 

[Aa,2]* z = [AQ,2y 
u 
w 

-w 
All2{Al'2u - >yAa-V2w} 

(3.13) 

(3.14) 

Observe that although Aafi and [Aaj2\* have a similar structure, they have different 
domains. In particular, Dom{[Aa,2}*) ^ Dom{Aafl) and Dom{[Aaa]*)nDom{Aaß) C 
Dom(A) x Dom(Aa). Again, the adjoint is given in terms of fractional powers of A, 
and in many cases, these operators are pseudo-differential operators without simple 
explicit representations. A third approach to this problem is based on returning to 
fundamental physics. 

4    A Physics Based Factorization 

The factorization (3.1) is a special case of a more general form.   If we define the 
operators 

S = All2 and D = Aa~1'2, 

then (3.1) can be written as 

x(t) + S*{Sx(t) + iDx{t)} = Bu(t). (4.1) 
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Observe that S* = S = A1/2 since A is assumed to be self-adjoint and positive 
definite.   Moreover, the basic spaces given in (2.3) - (2.6) are defined in terms of 
Dom(S) bv 

V = Dom{A1/2) = Dom{S), 

and 

with inner products 

and 

E = Dom(S) xH = V xH, 

(u1,u2)v = {Su1,Su2)H 

(4.2) 

(4.3) 

(4.4) 

Wi 

U2 

W2 

= {Sui, Su2)H + (iui, w2)H = («i, u2)v + (wu w2)H,      (4.5) 
E 

respectively. 
However, it is sometimes more useful to use a different factorization. We illustrate 

the basic idea by restricting attention to a simple ID wave equation. Although the 
presentation here is focused on this example problem, the approach can be extended 
to a wide variety of 2D and 3D problems in elasticity. Consider the problem of an 
undamped vibrating string on the interval 0 < s < 1 with fixed left end and free right 
end. If w(t, s) denotes the displacement of the string and a(t, s) denotes the stress, 
then the wave equation becomes 

-W(t,s)--a(t,s)=0, 

with displacement boundary condition at s = 0 

w(t,0) = 0, 

and "natural" boundary condition at s = 1 

tr(t, 1) = 0. 

(4.6) 

(4.7) 

(4.8) 

The strain is defined by e(t, s) = §-sw{t, s) and if one uses the stress-strain law 

a(t,s) = re(t,s), 

then the equation (4.6) becomes 

d2 

dt^
s)-i{4sw^s)}=°- 

The appropriate boundary conditions are 

d 
w{t,0) = 0,     r—w(t,l) = 0. 

(4.9) 

(4.10) 

(4.11) 
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On the other hand if one uses a dynamic stress-strain law such as 

a(t,s) = Te{t,s)+j-E{t,s), (4.12) 

then the equation (4.6) becomes 

£»<«■•>-£fl»M+^<M)} = o. (4-13) 

In this case the appropriate boundary conditions are now 

w(t, 0) = 0,     a(t, 1) = \r^-w{t, 1) + lj^w(t, 1)1=0. (4.14) 

The partial differential equation in (4.13) with boundary conditions (4.14) can be 
written as a second order system in the space of virtual displacements H = L2(0,1). 
We also introduce the space of deformations (or strains) E = L2(0,1) and define the 
operator 5 from H into S on the domain 

Dom{S) = Hl{0,1) = {«;(•) € Hl{0,1) | w{0) = o} (4.15) 

by 

[Sw(-)](s) = -w(s). (4.16) 

Then the adjoint of S is defined on £ into H by 

Dom{S*) = i4(0,1) = {(j(.) e ^(0,1) | a(l) = o} (4.17) 

and for CT(-) € Dom(S*) 

[S*a(-)\(s) = -^(s). (4.18) 

If the damping operator £>: #i(0,1) -)■ L2(0,1) is defined by D = S, then the wave 
equation (4.13) with boundary conditions (4.14) can be written as 

x(t) + S*{rSx(t) + jDx{t)} = 0. (4.19) 

Observe that we do not distribute S* through the brackets. In fact, (4.19) is 
the proper form of the physics based second order model for Kelvin-Voigt damping. 
Moreover, the first order form of (4.19) is easily expressed in terms of the basic 
operators S and D. To construct the first order model we define the spaces 

V = Dom{S) = Hl(0,1) (4.20) 

and 
E = VxH = Dom{S)xH = #£(0,1) x L2(0,1), (4.21) 



with inner products 

and 

{Ul,u2)v = (rSu1,Su2) H (4.22) 

\   = (TSU1,SU2)H + {WI,W2)H = (u1,u2)v + (wi,w2)H,    (4.23) 
IE 

respectively. Now define A on E = Hl(0,1) x L2(0,1) by 

Wi 

U2 

W2 

Dom(A) = < z - 
u 
w 

eE\u,weV, {TSU + ~jDw} € Dom{S*) \,        (4.24) 

where for z E Dom(A), 

Az = A 
u 
w 

w 
-S*{TSU + JDW} 

(4.25) 

Note that (4.24) - (4.25) is similar to (3.2) - (3.3) where a = 1. However, there 
are two primary differences between the operators A and Aij2. The operator S is not 
a fractional power of A = S*S and S* ^ S. Therefore, the operator defined by (4.24) 
- (4.25) is (in general) less "complicated" than A1]2 and yet we still have the following 
easily established result. 

Theorem 4.1  The operator A defined by (4-24) - (4-%5) generates an analytic semi- 
group onE = Hl(0,1) x L2(0,1). 

The above theorem has been extended to other PDE based models of elastic 
systems. Currently, we are working on a framework that applies to general abstract 
second order systems of the form (4.19). This framework has the advantage that the 
underlying spaces and operators are basic differential operators defined on standard 
Sobolev spaces. In addition, the physics based factorization is the natural choice 
when developing approximations (see [1]). 

It is interesting to observe that if one starts with the undamped equation (4.10) 
with physical boundary conditions (4.11) and simply "adds a damping term", then 
it is possible to lose the correct physical boundary conditions. For example, define A 
on H = L2(0,1) with the domain 

Dom(A) = 1 w(-) e #2(0,1) : iu(0) = 0, ^-w(l) = 0 
ds 

by 

[Aw(.)](s) 
d*_ 
ds2 w(s). 

(4.26) 

(4.27) 



The wave equation (4.6) becomes 

x(t) + Ax(t) = 0, (4.28) 

and if one adds a damping term with D0 = A1 (i.e. a = 1), one obtains the second 
order system 

x(t) + jAx(t) + Ax{t) = 0. (4.29) 

Note that (4.29) is actually the abstract form of the damped wave equation 

ww{t>s) - T.\ Tdia{t-s) + 7ätäJ<*s) r °- (430) 

with boundary conditions 

w(t,0) = 0,    r—w{t,l) = 0. 

However, the correct physical boundary conditions (given by (4.7) and (4.8)) should 
be 

w(t, 0) = 0,     lr^w{t, 1) + 7^jw(t, 1)1 = 0. (4.31) 

Therefore, the system (4.29) is not the abstract form of the physics based model 
defined by the partial differential equation (4.30) with boundary conditions (4.31). 
We close by remarking that although (4.29) does not "capture" the correct physical 
boundary conditions, that is not to say that AaA defined by (2.8)- (2.9) is not im- 
portant in the study of such systems. However, it is crucial to understand that this 
system may not be the abstract form of the physical problem that is under control. 

5    Conclusions 

In this paper, we present three formulations of the abstract form of damped second 
order systems based upon different factorizations of the structural operator. One form 
which is based upon the physics is especially useful in that the underlying operators 
are differential operators with simple explicit representations. Further, this form 
captures the physics, specifically, the correct boundary conditions. This formulation 
has been extended to other PDE based models of elastic systems. Additionally, we 
are currently working on a framework that applies to general abstract second order 
systems of the form (4.19). This framework has the advantage that the underlying 
spaces and operators are basic differential operators defined on standard Sobolev 
spaces. Moreover, this framework is a natural choice when developing approximations 
(see [1]). 
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